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Abstract: New technology in the form of wavelet-based methods coupled with intelligent
classification schemes built around neural networks, can drive the development of substantially
improved fault detection and identification (FDI) methods. Such systems represent important
next generation FDI kernels for integration into advanced condition based maintenance systems
for rotating machinery. This paper presents an overview of the results obtained by
ALPHATECH in a program aimed at developing wavelet/neural network based FDI systems for
vibrating machinery. The paper presents the performance results of these methods applied to a
range of platforms including helicopter transmissions, turbopumps, and gas turbines. In addition,
enhancements to the basic fault detection and identification system are presented anu include
overviews of multi-sensor wavelet-based differential features and ii, proved FDI performance
through classification fusing using hierarchical neural networks.
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INTRODUCTION: As the 21st century approaches, global competition will continue to
produce tremendous economic pressures on all industrial powers. The results of this competition
are shorter time to market and thinning profit margins with a simultaneous demand for increased
product quality and improved overall efficiency. Unfortunately, the coupling of these
phenomena to military domains will be quite direct. Decreases in real GNP for individual
industrial powers directly affects their ability/determination for increasing resources for
maintaining viable high-tech military forces in an ever increasing complex world. The military
domain under such circumstances will continue to experience increasingly tighter budget
appropriations, cancellation of important new systems while simultaneously struggling with the
problems of sustaining a high state of readiness in the face of rapidly aging platforms.

In the commercial domain, knowledge of enterprise wide machinery health and usage are crucial
to avoid expensive down time. Timely fault detection and identification at a local level can
prevent more serious damage to other parts of the enterprise that are coupled. In the military
domain, the mathematics of decreased budgets translates to being able to maintain the status jiuo
with fewer resources. For personnel intensive operations, methods for streamlining processes,
increasing automation, and computerizing monitoring/repo.,* ig will be at the top of the priority
list. More sophisticated/automated machine monitoring systems that require reduced human
intervention will be a very desired commodity.

Presently, the dramatic decrease in the cost of powerful computational capability is fueling the
investigation and uses of significantly more advanced system and signal processing methods for
application to the domain of machine monitoring and prognostic systems [1]-[3]. A particularly
promising set of methods relies on the application of wavelets and neural networks to the
development of next generation fault detection and identification (FDI) systems [4]-[12]. The
current form of the technology involves wavelet-based methods for decomposing system
vibrations and coupling intelligent classification schemes that rely on neural networks for
identifying machine condition and state of deterioration.



This paper presents an overview of these wavelet/neural network based FDI methods. The paper
presents the performance results of these methods applied to a range of platforms, such as
helicopter transmissions, turbopumps, and gas turbines. Additionally, enhancements to the basic
fault detection and identification system are presented and include overviews of multi-sensor
wavelet-based differential features and improved FDI performance through classification fusing
using hierarchical neural networks.

WAVELET/NEURAL NETWORK BASED METHODS: This section presents the
application of wavelet-based techniques coupled with neural networks to develop a fault
detection and identification system. Continuous wavelet transforms and the selection of wavelet
basis functions appropriate for real-time feature extraction are discussed. Examples are given for
complex platforms providing formidable FDI challenges. The successful development of
advanced fault monitoring processes for these platforms provides substantial benchmarks for the
viability of the wavelet-based tools being developed.

Continuous Wavelet Transtorms: To develop viable FDI schemes, means of extracting
significant discriminate features from the vibration signal plays a critical role. Harmonic
analyses in the form of a Four~er transform proves problematic for several reasons. First, the
transform is global in that localized events in time can affect the entire frequency spectrum.
Additionally, the Fourier transform is fundamentally not applicable to real-time monitoring
applications due to the mathematical formulation of the transform that operates on the entire time
axis. Windowing schemes are thus required to address the real-time feature extraction
requirements for capturing important events localized in time. Unfortunately, fixed windowing
schemes imply fixed time-frequency resolution in the time-frequency plane. The problem this
poses is the selection of a single window that provides sufficient fidelity discriminating
important events in the vibration signal that are separated by large orders of magnitude along the
frequency axis. This scenario is exemplified by main helicopter transmissions where important
information concerning bearings can be on the order of tens to hundreds of Hertz, whereas mesh
frequencies and important fundamentals associated with gearing of the engine inputs can be on
the order of tens of thousands of Hertz (i.e. order of -104).

The continuous wavelet transform (CWT) resolves the window selection problem with a "zoom-
in" and "zoom-out" capability that generates a flexible time-frequency window that
automatically narrows (along the time axis) at high center-frequencies and expands (along the
time axis) a. low center freq iencies [13]. The continuous wavelet transform provides this
flexible time-frequency analysis by decomposing the vibration signal over dilated and translated
wavelet basis functions. A wavelet is a function with finite energy, or a member of the function
space L2(R), i.e., a wavelet function satisfies:

_ Iv,(x)fdX <c 
(1)

The wavelet function has a zero average or essentially no DC component. A set of basis
functions is obtained through dilation's and translations of a base wavelet and takes the form:

V.,"(t= ,s (2)

where u is the translation parameter and s is the dilation parameter. The wavelet transform is
then achieved via the inner product of the respective vibration signal, f(t), with the wavelet
basis function of eq. (2):

Wf(u,s)= fJf(t)_s ,{(t-u}t (3)
2(3



There are an infinite number of wavelet basis functions that satisfy eq. (1) and contain no DC
component. The particular analyzing wavelet basis functions used in this work were
mathematically inspired from biological systems that are effective in their decomposition and
detection of vibration signals. The wavelet basis functions mimic the auditory nerve neuron's
impulse response. This particular wavelet family has semi-infinite support in the time domain
and can be modeled using causal real-rational transfer functions. The immediate implication is
the ability to develop, on the individual wavelet basis function level, real-time feature extractors
that can be efficiently implemented using auto-regressive moving average techniques (ARMA).

Wavelet-Based FDI: Figure 1 provides a simplified block diagram of a wavelet-based FDI
system. The goal of the system is two-fold. First, the wavelet-based feature extraction provides
the important role of extracting the essential projections of the system dynamics in an efficient
manner. Second, the wavelet feature set essentially reduces the dimension of the information
from the input space (real-time, continuous, analog vibration signal) to a robust lower
dimensional representation that simplifies the design of the adaptive neural network
classification scheme. In the design phase (as indicated in Figure 1), CWT analysis is performed
on the vibration data sets to identify a set of robust wavelet features (in time and frequency) that
provide discrimination between normal operation and failure conditions. In addition, these
wavelet features p,,vide sufficient separation of the faildre conditions in feature space for
reliable identification of the fault condition using capable classification technologies such as
neural networks. Once selected, these features form the components of a feature vector extracted
from the vibration signal on a regular basis. The time interval between wavelet-based feature
vectors extracted from the vibration signal is user and application dependent [6].

As part of the extraction process, the wavelet basis function is adapted relative to slowly varying
mesh fundamentals to compensate for input engine RPM fluctuations. Feature post-processing in
the form of nonlinear transformations of the feature components is employed to provide
enhanced separation of failure conditions in feature space, and hence improved classification.
Finally, extracted feature vectors train an adaptive, neural network classifier. During real-time
monitoring applications, the classifier output provides basic/raw classification results indicating
the state of the system under test. Depending on the actual system requirements and needs, this
basic classification information may be subject to further processing to enhance higher level
diagnostic decision systems, or may be conjoined with other auxiliary information or systems in
a fully integrated diagnostic/intelligent monitoring system.
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Figure 1. Wavelet-based FDI System



APPLICATION TO ROTATING MACHINERY:

Helicopter Main Transmission: Data sets from the main transmission of a helicopter with
seeded faults were acquired from a major helicopter manufacturer. The transmission involves
multiple gears, multiple shafts, and multiple meshes, and thus produces complex vibration data.
The challenge is determining the physical phenomena that can be inferred from the wavelet
visualizations, and whether a robust feature set can be extracted for FDr purposes. It is necessary
to relate the CWT visualization structure to physical phenomena when selecting wavelet based
features. Despite the complexity of the vibration structure in this helicopter main transmission,
the CWT provides a vivid portrayal of the physical phenomenon occurring during the
transmission operation.

CWT Analysis Main Transmission: Figure 2 is a CWT visualization of the first second of
normal operation of the helicopter main transmission as recorded y a sensor on the transmission
housing [9] at a shaft input power of 1000 HP. The Figure 2 visualization contains 512 wavelet
filters distributed in an octave (log base 2) fashion along the scale axis (the vertical axis with
units of Hz). The magnitude of the wavelet outputs were processed by a smoothing filter
configured to have 5 millisecond smoothing time constant. The outputs were down-sampled to
512 Hz and the magnitudes color-coded using a hue-saturation scheme that maps red to large
magnitudes and black to small ma nitudes.

Figure 2. CWT of Normal Operation for Helicopter Transmission

The most notable structure in Figure 2 is the frequency-modulated and amplitude-modulated
structure at around 1323 Hz. This corresponds to the mesh between the main input bevel gear
and the top of the main bevel gear. This modulation is a very common effect in the vibrations of
drive systems [14], and is usually (but not always) related to the shaft frequency. For the CWT
of Figure 2, the average modulation period is of the order of approximately 52 milliseconds.
This corresponds to a frequency of 19.2 Hz, which is nearly the frequency of rotation of the Main
Bevel Gear. The second harmonic of the mesh at 1323 Hz is once again very visible at
approximately 2646 Hz and exhibits a smearing effect of the modulation observed in the



fundamental. The third fundamental at 3969 Hz is still very visible. Another important vibration
at 12920 Hz is prominent in Figure 2. This vibration corresponds to the mesh of the input
engines and spur gears. The second harmonic of this mesh is also visible at 25840 Hz. A
modulated vibration at approximately 1949 Hz ccrresponds to the mesh of the bottom of the
main bevel gear and main bevel output gear to the tail rotor. The lines associated with the
second harmonic are readily visible at 3898 Hz. There is a relatively strong line at
approximately 5708 Hz, and it's second and third harmonics appear visible at 11416 Hz and
17124 Hz, respectively.

To determine a viable set of robust wavelet features, the normal operation CWT must be
compared against the CWT visualizations for all fault cases. Additional processing tools based
on morphological operations of the CWT images assist the feature identification process. The
selection is primarily data driven (i.e., driven by differences detected in the visualizations), but
the analysis of the previous section provides important links to the physics of the vibration
structure observed. This ensures the capturing of important system dynamics that bear a causal
relation to the underlying physics of the fault vibration mechanisms.

Extracted features were normalized by the magnitude of the wavelet output associated with the
linking feature to account for recording variation. The wavelet magnitude outputs were
smoothed using a 5 millisecond smoothing time constant and features were extracted every 10
milliseconds. Features were extracted from approximately 2.9 seconds of data for t ich case, and
each case generated 286 feature vectors. More details concerning the features extracted and
feature post processing are found in [9].

Neural Network Classification and Results: A total of 858 feature vectors (286 from each of
three classes: normal, pre-overhaul, and post-overhaul) resulted from the feature extraction
process. Three hundred (300) feature vectors, or 100 from each class, were used to train a global
neural network with backpropagation. The neural network was trained until a sum-squared error
of .975 was attained. Once the neural network was trained, all 858 feature vectors were
presented to the neural network for classification. The performance results appear in Table 1.
The cost of obtaining this extremely accurate classification is modest. The neural networks
consisted of a small number neurons. The relative training time and convergence to small sum-
squared errors was very fast given the small number of neurons used.

TABLE 1. SUMMARY OF NEURAL NETWORK PERFORMANCE RESULTS

Performance Results Performance Results

Prob. of False Alarm .00699 Number of Feature Vectors 858
Used in Classification

Prob. of Missed Detection .00350 Number of layers 1
Prob. of Misclassification .00466 Number of total Neurons 3
Prob. of Deferral 0 Training Error (SSE) .975838
Number of Feature Vectors 300 Number of Training Epochs 8550
Used in Training

Complete Non-Parametric Approach: To illustrate that one can build wavelet-based FDI
systems with essentially no detailed mechanical information concerning the underlying
platforms, a second set of vibrational data from a different helicopter transmission was obtained.
Unlike the previous helicopter example, this helicopter data set was unaccompanied by any
mechanical information. The goal was thus to apply our wavelet methodology to develop a high
performing FDI system in the absence of any detailed mechanical information.
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The data was supplied with the following brief information: vibration data for normal operation
("nor") and multiple fault conditions were recorded at different torque levels by eight
accelerometers positioned at various unspecified locations. The multiple fault operations
included bearing corrosion at the planetary pinion ("fault 2") and at the spiral bevel input pinion
("fault 3"), tooth spalling at the spiral bevel input pinion ("fault 4"), tooth chipping at the helical
input pinion gear ("fault 5"), and crack propagation at the helical idlv,' gear ("fault 6"), at the
collector gear ("fault 7") and at the quill shaft ("fault 8"). The data from the eight accelerometer
sites was multiplexed with a reference and tachometer signal. Each signal contained 2.261
million samples with a 116.5 kHz sampling rate. No mechanical information was provided.

An initial approach consisted of selecting an intermediate torque setting. Not every fault was
recorded at every torque level. Therefore, an intermediate torque value with a representative
number of faults was selected. CWT visualizations were then generated at all accelerometer sites
to iden:-fy the most observable sites. Accelerometer 7 was selecteu as the most desirable
accelerometer site and CWT analysis was performed using the data for 100% torque values that
included normal condition and six (out of seven) fault conditions.

Discriminating features were obtained by comparing the normal and fault operation CWTs.
These features were then used to train a global neural network. The neural network architecture
used a backpropagation learning rule with an adaptive learning rate and momentum. The neural
network consisted of two layers and twenty-two neurons (fourteen neurons in the first layer,
eight neurons in the output layer). The network was deemed trained when a sum squared error of
0.02 was achieved. The data for the fault scenarios and the normal condition at accelerometer
site seven at 100% torque was then applied to the neural network for classification.

A confusion matrix is presented in Table 2. The network trained on 100 feature vectors and
classified 920 feature vectors. Wavelet-based feature vectors were extracted every 10 ins. To
understand the tabulation method (i.e., confusion matrix) used to display the results of this FDI
simulation, individual table elements indicate the following: an element in the confusion matrix
indicates the number of feature vectors from a given class (row label) that were classified as the
class with the corresponding column label. Perfect fault detection and idtntification results in a
confusion matrix tabulation were all numbers aligned on the main diagonal.

Results as tabulated in Table 2 indicate that very high performing wavelet/neural network based
FDI was obtained. The probability of false alarm was zero and the proL.,,Ality that a fault
condition will be classified as normal operation is 0.078%. The probability of fault
misclassification is 0.068%.

FDI analysis was therefore successfully performed non-parametrically. Mechanical information
about the helicopter transmission system was unknown and the only information supplied was
the number and types of faults present in the transmission. A feature set was derived merely by
comparing CWT visualizations from normal and fault operation. This generic methodology was
then used to generate feature vectors that trained a global neural network. The classification
performance of the neural network was highly accurate as shown by the confusion matrix and the
time history of the neural network performance.

Turbopump Applications: This section focuses on applications of the wavelet based FDI
system to detect bearing failures within High Pressure Oxygen Turbopumps (HPOTP) of the
Space Shuttle Main Engine (SSME). The SSME turbopump rotates at up to 30,000 rpm on two
pairs of bearings, one pair at the pump end and one pair at the turbine end.

Vibration data was collected during several test firings at two different rated power levels (104%
and 109%) of one new turbopump and six faulty turbopumps (i.e., these pumps were rejected by
the flight center due to the evidence of bearing degradation in their dynamic signatures). The



TABLE 2. WAVELET / NEURAL NETWORK BASED FDI SIMULATION RESULTSII Estimated Classes
Classrrect nor fault2 fault 3 fault4 JfaultS fault6 fault 7 fault 8 def

nor 920 0 0 0 0 0 0 0 0
fault 2 0 920 0 0 0 0 0 0 0
fault 3 0 0 920 0 0 0 0 0 0
fault 4 0 0 0 920 0 0 0 0 0
fault 5 0 0 0 0 920 0 0 0 0
fault 6 5 0 0 0 0 915 0 0 0
fault 7 0 0 0 0 0 0 920 0 0
fault 8 0 0 0 0 0 0 0 920 0

vibration signals were measured from two accelerometers located at 1350 from the pump inlet
and 450 from the pump inlet. The vibration data was recorded and used in the FDI analysis.
Each turbopump was inspected after test firings and it was determined that each pump had
different beaniug failures and ball wear; thus, the goal of the wavelet-based IDI system was to
correctly classify the different pun,,js to differentiate betwv en the various faulty ,imps and a
normal pump.

The analysis was performed on 13.9 seconds of data collected from the accelerometer located at
1350 from the pump inlet during the firing test at 104% rated power level. The distinct features
were determined by comparing the CWTs of the normal operating turbopump against the faulty
pumps. These features were then used to train a global neural network. The neural network
consisted of two hidden layers and twenty-one neurons (fourteen neurons in the first layer, seven
in the second layer). The neural network was trained on 130 feature vectors and classification
was performed on 1391 feature vectors. The training was determined to be complete when the
sum-square error goal of 0.02 was reached.

Table 3 shows a confusion matrix presenting the classification results. The normal operating
pump is designated as "nor" and the faulty pumps are represented by their flight unit number.
Table 3 indicates good classification results through wavelet/neural network based FDI that
includes a probability of false alarm of 0.07% and a probability of missed detection of .12%, and
a probability of fault misclassification of 2.19%. Important points to note here is that these
results are the basic output classifications occurring every 10 ms without any deferral
mechanisms or post classification algorithms performed. Simple deferral, averaging and
trending techniques will provide nearly flawless detection and identification at the sacrifice of
aggregating classification decisions that are occurring every iO ms. Another, significant point is
that the data was collected from physically different pumps. Hence these results illustrate the
excellent performance that can be achieved using these methods when applied to different
physical units of the same type (i.e., the interoperability of the FDI systems across different units
is not a problem).

Gas Turbine Example: The application here focused on investigating trending and prognostics
using wavelet-based methods for detecting gas turbine engine blade tip shroud failures.
Endurance tests are performed on aircraft engines to evaluate and detect component failures by
operating the engine at a variety of speeds over extended time intervals. During endurance
testing of the Fl 10-GE- 129 at the General Electric (GE) Aircraft Engine Division, data was
collected from six accelerometers. Accelerometers measuring horizontal vibrations and vertical
vibrations were positioned at each of three different locations. These three locations included the
front end of the fan frame, the rear end of the fan frame, and the rear end of the low pressure
turbine frame (Figure 3).
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TABLE 3. WAVELET / NEURAL NETWORK FDI RESULTS FOR HPOTP SSME
Estimated Classes

Correct nor un2325 un2321 un2224 un2322 un4402 un4009 lef
Classes

nor 1390 1 0 0 0 0 0 0
un2325 1 1334 3 18 0 20,,- 15 0
un2321 0 2 1376 3 0 4 6 0
un2224 0 17 0 1371 0 0 3 0
un2322 3 0 0 0 1385 3 0 0
un4402 5 74 4 0 4 1293 11 0
un4009 1 10 2 0 0 4 1374 0

Dudnn the endurance tests, a shroul failure (i.e., partial separation of lie shroud) occurred on a
blade up in the second stage of the low pressure turbine (LPT). This failure caused a rotor
imbalance, which consequently generated engine vibrations. At the time of failure, the turbine
was operating at approximately 8600 rotations per minute (rpm). GE Aircraft Division provided
the raw data from all six accelerometer sites to ALPHATECH, Inc., for analysis. The purpose of
the analysis was to determine whether the failure could be detected, and whether that failure
could be predicted.

ACCELEROMETERS 'ACCELEROMETERS

CM STOR I
FAN COMPRESSOR HIGH LOW

PRESSURE PRESSURE
TURBINE TURBINE

Horizontal Accelerometer Data at this location analyzed.
(Failure at Second Stage of Low Pressure Turbine.)

Figure 3: Instrumented Turbine Engine

Analysis of the GE turbine engine data began by examining the accelerometer data from all six
accelerometer locations using time-scale analysis (i.e., CWT visualizations), while considering
turbine engine mechanics and general turbine engine operation. Although the time-scale analysis
indicated all six sensors detected the fault, the horizontal accelerometer at the turbine fan frame
location generated the most prominent reaction to the blade tip shroud failure. The attenuated
response at the remote accelerometers (relative to the LPT stage 2 turbine blade) is explained by
the mechanical structure of the turbine engine.

Using data from the horizontal accelerometer at the turbine frame, time-scale analysis was
performed on a four second region, eighty seconds prior to the shroud failure, and a four second
period, one-hundred forty-one seconds following the shroud failure. By observing the Normal
(i.e., pre-failure) operation CWT and comparing with the Fault operation (i.e., post-failure)
CWT, several distinguishing characteristics appear. It was thus clear from the CWT
visualizations that fault detection was possible.



As mentioned previously, the turbine speed at the fault instant was 8600 rpm, or 143.3 Hz. This
frequency component is noticeably affected by the shroud failure, increasing in magnitude and
bandwidth in the post-failure CWT. Additionally, the second harmonic of this frequency,
approximately 280 Hz, appears with increased strength in the post-failure condition. Other
frequencies of interest are noted by the post-failure decreases in magnitude at approximately 250
Hz, 500 Hz, 4550 Hz, and 6800 Hz.

Although CWT visualizations indicate that wavelet technology produces information to
recognize the fault scenario, being able to reliably predict an impending failure before it actually
occurs is a highly desired commodity in the turbine engine diagnostic community. The
information obtained by comparing pre and post-failure CWT time-scale images was therefore
used to train a global neural network. Once the neural network was satisfactorily trained (i.e.,
sum-squared error of .02), GE data from the failure period was applied to the neural network for
processing and classification. A fifty-eight second interval was selected. The blade tip shroud
failure occurred at approximately fifty-one seconds into this record.

Output from the neural network occurred every 10 ms during the course of the fifty-eight
seconds monitored. The raw outputs of the neural network were processed by a set of causal
algorithms (i.e. algorithms that could be used in an on-line, ieal-timL. moniloring system).
Figure 4 presents the results of this processing.

As the top plot (Normal Indicator) of Figure 4 illustrates, at the beginning of the fifty-eight
second interval, or nearly 40 seconds before the actual failure, the system is generating a strong
indication of normal activity, with no indication (bottom plot, Fault Indicator) of any fault;
however, almost immediately thereafter, the Normal Indicator begins declining at approximately
the same rate as the rise in the Fault Indicator, thereby illustrating a system with a progressively
increasing fault. By approximately second 26 on the relative time plots, both Normal and Fault
Indicators are at a value of 0.5, strongly implying a faulted system, particularly when compared
to the Normal operation as evidenced at relative time 0-5 seconds. By second forty, or eleven
seconds before actual failure, the Fault Indicator, at value 0.7, heavily outweighs the Normal
indicator at less than 0.3. By second forty, the system outputs have moved closer spatially to the
fault condition.

The trending results are extremely promising for detecting faults before actual failure. By
implementing thresholding logic upon globally trained neural network data as shown in Figure 4,
system operation may be accurately characterized for reliable and robust prognostic systems.
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Figure 4: Fault Indicators for Fl 10-GE-129 Turbine



SYSTEM ENHANCEMENTS: Wavelet visualizations in the form of CWTs from different
sensor sites provide varying perspectives and insight into the mechanical operation of the
transmission [10]. In fact, it is highly desirable to distribute the sensors around the transmission
to guarantee observability of all important mechanical phenomena available from the vibration
signals that could provide useful in health monitoring operations. Previous work has indicated
that it is possible to achieve comparable, well performing, wavelet-based FDI systems from more
than just a single sensor site [11]. An issue to consider would be how this information from
multiple sensors might be combined to produce higher performing wavelet-based FDI systems.

One method for combining information from multiple sensor sites to achieve higher performing
wavelet-based FDI systems would be to combine information extracted from the sensor sites at
the feature vector level before performing classification. The next section on using multi-sensor
wavelet-based differential features discusses such an approach and presents results achieved.

Another method for improved FDI consists of combining informr 'on from multiple sensors after
the classification stage. A number of sensor sites can lead to reasonably well performing, single
sensor, wavelet-based FDI systems. All such FDI systems are continuously making assessments
about the operational conditiorn of the platform (i.e., whether or not it is in a normal regime).
When a failure is detected these systems, localized to an individual sensor site, are trained to
decipher which particular fault the transmission is currently suffering from. However, different
sites allow viewing the underlying mechanical phenomenon in different ways or from different
aspects. Combining these multiple wavelet-based FDI results in some meaningful way may
prove useful in developing health monitoring redundancy and increased robustness for an
overall, higher performing, wavelet-based FDI system. The section dealing with hierarchical
neural networks discusses one such method for combining individual sensor site wavelet / neural
network FDI information for improved system performance.

Using Multi-Sensor Wavelet-Based Differential Features: To improve upon fault
identification, multiple sensor wavelet extraction was investigated. The technique involves
identifying a primary sensor site from which wavelet features are extracted. Using a secondary
sensor site (or possibly multiple sensor sites), wavelet features at various scale settings are
differenced against the primary sensor values. These differential features are conjoined to the
original primary feature vector, thereby increasing its dimension. This enhanced set of feature
vectors is then 'ised as the basis for classification.

This met'-od was applied to two channels of helicopter intermediate gearbox accelerometer data
and the results were compared with results obtained using single channel data with no differential
wavelet-feature augmentation. The single channel case resulted ijn 14 curvature/power features
being extracted; however, when 15 additional differential features were added, the multiple
channel case expanded to 29 curvature/power features.

To compare the separation power of the two feature sets, Fisher Linear Discriminants, which
provide a one dimensional metric (linear functional) indicating the maximum separation between
classes, were computed. The maximum separations computed using the differential feature
element set were improved 15.2% with a resulting improvement in the FDI performance of
17.3% without deferral processing and 42.3% with deferral processing. For more details see [7].

Improved FDI Through Hierarchical Neural Networks: A natural question to be considered,
in light of the fact that a select set of sensor sites have the ability to perform reasonable fault
detection and identification, is the following: is there a reasonable way to combine or aggregate
this FDI information from the individual sensor sites to produce a more reliable, robust, higher
performing, overall FDI system? One method might be to collect the resulting FDI information
from these wavelet / neural network systems and devise some ad-hoc methodology for
integrating, aggregating or effectively combining the results to produce better fault detection and



identification decisions. Another method might be to defer making any decision on what this ad-
hoc aggregating and/or combining algorithm should be and design a hierarchical neural network
to figure out an appropriate strategy.

A hierarchical neural network would be designed to take information from a number of these
complete, individual, wavelet / neural network FDI systems localized to a particular sensor. This
hierarchical neural network would then be effectively trained to automatically devise an
appropriate aggregation and/or combining algorithm (which could effectively be highly non-
linear) to process multiple FDI data from multiple sensor sites with the goal of improving the
overall robustness and performance of the eventual FDI system. Figure 5 provides a block
diagram of the proposed hierarchical neural network system.

Local Wavelet -Sensor Site N -Neural Network
FDI System

FLocal Wavelet - Hierarchical N ew F
T e4surize t Neural Network p Neural tn io v

Sa iven FDIl System N Network FesensFDI System

Local Wavelet
Senso SiteN) • Neural Network

FD1 System

Figure 5. Block Diagram of Hierarchical Neural Network FDI System

Table 4 summarizes the neural network performance for helicopter main transmission vibration
data that was recorded for normal operation and multiple fault conditions at three sensor sites.
Results are given for the individual sensor wavelet/neural network FDI system (i.e., sensor 8,
sensor 9, sensor 10) and the hierarchical system designed using all three sensor sites.

TABLE 4. PERFORMANCE METRICS FOR ALL FDI CONFIGURATIONS
Metric ISen'•r 8 Sensor 9 Sensor 10 =Sensor 8,9, J 10

PFA 0.0 0.002594 0.009079 0.0

PMD 0.003886 0.002594 0.0 0.0

PMC 0.003886 0.007782 0.01038 0.0

The networks were trained on thirty feature vectors from each fault class. Classification was
conducted for each fault case across 2.52 seconds of vibration data. Table 4 shows the
probability of false alarm (PFA), the probability of missed detection (PMD) and probability of
misclassification (PMC). The Table 4 results indicate that the overall performance of the neural
network improves as the sensor sites are combined. For more details on this methodology and
simulations performed see [12].
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CONCLUSIONS: Wavelet technology, when coupled with intelligent classification schemes
constructed from neural networks, provides a basis for designing powerful fault detection and
identification systems. This technology when applied to challenging vibrational systems, such as
helicopter transmissions, resulted in highly accurate classification results. Similar results were
obtained when applying these methods to other platforms such as turbopumps. These techniques
have been extended to provide a promising prognostic / trending technique for failure prediction
and fault severity indicators as demonstrated by the gas turbine application overviewed in this
paper. Further robustness and improved system performance are achie4able through aggregation
and fusing methods across multiple sensors at both the feature extraction level and classification
level. Finally, depending on the actual system requirements and needs, these basic wavelet /
neural network FDI kernels, designed for real-time monitoring operations, can be integrated to
support higher level diagnostic decision systems, or may be conjoined with other auxiliary
information or systems in a fully integrated diagnostic/intelligent monitoring system.
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